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Details of the EM Algorithm

Recall that the goal is to maximize the likelihood (or log likelihood) of the observed data:

log(PY (y; θ)).

Sometimes, when the log likelihood is difficult to maximize, a missing (or latent) variable helps the compu-
tations. Consider Z to be the missing/latent variable. By using the law of total probability (and more):
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by Jensen’s Inequality (1)

Equation (1) creates a lower bound on the quantity we want to maximize. For ease of computation, the
focus will be on the right side of equation (1) during the maximization step.
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= Q(θ|θi)− EqZ,θi [log(qZ,θi(z))] (3)

Because the goal is to maximize the likelihood with respect to θ, only the first term on the right side
of equation (3) is relevant. That is, if Z is known (for a given value of θi), then the maximization of the
likelihood simplifies to:

The M-Step

θ̂ ← argmaxθEqZ,θi [log(PY,Z(y, z; θ))]

θ̂ ← argmaxθ Q(θ|θi)

But unfortunately, we don’t typically know the value of Z, or really, qZ,θi(z).

The E-Step
In the expectation step we aim to find qZ,θi(z) that will optimize the likelihood. Recall the quantity above
that we hope to maximize:
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It turns out that
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PZ|Y (z|y;θ) is always greater than 1 (it is called the Kullback-Leibler divergence), so

log(
qZ,θi (z)

PZ|Y (z|y;θ) ) is always greater than zero. In order to make it as small as possible (i.e., to maximize

the righthand size), we want the ratio to be as close to one as possible.



qZ,θi(z) ≈ PZ|Y (z|y; θ)

That is, the value of qZ,θi(z) that maximizes the likelihood, is PZ|Y (z|y; θ). So, what did we do? We wanted
to maximize the likelihood of the given data. Because it was difficult to do directly, we found an algorithm
that would iterate between maximizing the likelihood with respect to θ when qZ,θi(z) is known, and then
solving for qZ,θi(z) when θ is known.

Does it work?

The EM Algorithm seems like an intuitive way to go back and forth between parameter estimation and
estimation of missing information. However, how can we show that it actually converges to a maximum of
some kind?

log(PY (y; θ)) = log(PY,Z(y, z; θ))− log(PZ|Y (z|y; θ)) cond prob, rearranged

EqZ,θi [log(PY (y; θ))] = EqZ,θi [log(PY,Z(y, z; θ))]− EqZ,θi [log(PZ|Y (z|y; θ))]

log(PY (y; θ)) = Q(θ|θi) +H(θ|θi)

which holds for any value of θ, including θi.

log(PY (y; θi)) = Q(θi|θi) +H(θi|θi)

Subtracting the two previous equations gives:

log(PY (y; θ))− log(PY (y; θi)) = Q(θ|θi)−Q(θi|θi) +H(θ|θi)−H(θi|θi)

And Gibbs’ inequality tells us that H(θ|θi) ≥ H(θi|θi). So we can conclude that:

log(PY (y; θ))− log(PY (y; θi)) ≥ Q(θ|θi)−Q(θi|θi)

If θ makes Q(θ|θi) bigger than Q(θi|θi), then log(PY (y; θ)) cannot go lower than log(PY (y; θi)).

EM Algorithm

Algorithm 1 EM Algorithm

Take initial guesses for the parameters, i = 0.
for i = 1, 2, 3, . . . do

Expectation Step: compute the probabilities of each possible value of Z, given θ. Use them to estimate
the complete data likelihood as a function of θ.

qZ,θi−1 ← pZ|Y (z|y; θi−1)

Q(θ|θi−1) = EqZ,θi−1 [PY,Z(y, z; θ)]

Maximization Step: compute the values of the parameters by maximizing the likelihood with the
distribution of z known (that is, under the probability distribution of Z given above).

θi ← argmaxθEqZ,θi−1 [PY,Z(y, z; θ)]

Alternatively:
θi ← argmaxθ Q(θ|θi−1)

if θi ≈ θi−1 then
return θi.

end if
end for


